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ABSTRACT 

A microprocessor based architecture for the implementation of digital 

logic devices is presented. The architecture facilitates replacement of 

portions of the hard-wired logic chains within the device with groups of 

microinstructions called kernels. 

the processor simplifying interface problems such as buffering, interlocking, 

and sequencing. This greatly reduces overall package count, power consump- 

tion, system complexity, and therefore system debug time aild c o s t  while 

improving system flexibility with the programmable control store. A three 

dimensional graphics display processor the the Tektronix 4014 terminal, 

built using Intel 3000-series microprocessor elements, is discussed demon- 

strating the viability and benefits of this architecture. Such processor 

elements permit approximately 250,000 twenty microinstruction kernels to 

be executed in place of hard-wired logic per second. 

Multiple modules of a device may share 

This report was prepared as a result of work performed under NASA 
Contract No. NAS1-14101 while the author was in residence at ICASE, NASA 
Langley Research Center, Hampton, VA 23665. 



I. Introduction 

The control of basic digital logic functions such as sequencing, 

data flow, and arithmetic unit operation by bits in a programmable control 

store is at least as old as the EDSAC I1 (1953). Until recently, however, 

this microprogramming of logic functions served largely to improve system 

design flexibility, not to reduce size, power consumption, cost, or improve 

performance. The development of microprocessors using MSI and LSI  techno- 

logies has provided these additional benefits and therefore significantly 

effected the digital logic design process (1). 

Initial utilization of these microDrocessors (2)  (3) ( 4 ) ,  centered 

around the Intel 8080 and similar hundred thousand instruction Der second 

processors, was characterized by replacement of large sections of digital 

logic with serial execution of stored programs interfaced to the outside 

world and internal SSI logic. Such utilization made products such as 

:alculators, point of sale terminals, adaptive traffic control systems, 

etc. economically feasible and will undoubtedly continue to represent a 

major part of the intelligent device market. They are, however, limited 

to applications requiring at most several thousand operations per second 

since each operation must be implemented as a series of machine instructions. 

Recent bipolar LSI technology has produced processors such as the 

Intel 3000 and AM2900 series devices which are capable of executing 

several million instructions per second. 

of handling orders of magnitude faster applications, are multi-package 

These processors, while capable 

systems and therefore are not necessarily as cost or performance effective. 

In addition, since their mdtipurpose nature demands many internal logic 



levels between input and output, they can never completely duplicate the 

performance characteristics of SSI  logic. 

This paper describes an architecture for the interconnection of such 

bipolar microprocessors and SSI logic which can provide major logic 

function unit replacement for low speed-requirement operations, minor 

function replacement for higher speed-requirements, and direct logic 

execution of time-critical operations. Examples of these modes include 

matrix multiplication every several milliseconds (hundreds of instruc- 

tions), multiple-bit shift or buffer push/pop every several microseconds 

(several instructions), and bit serialization for disk transfers (hard- 

wired logic). 

11. System Architecture 

The microprocessor system referenced herein as an example of the 

architecture being presented was designed to support eight independent 

logic devices such as disk units, communication lines, CRT's, and multiply- 

divide units. It was implemented using Intel 3000 series microprocessor 

elements with a sixteen-bit word size (eight two-bit arithmetic unit 

slices) and a sixty-bit microinstruction word. Use of Intel components 

and these specific field sizes should not be considered characteristics 

or requirements of the basic architecture. 

Whether it be along communication lines or wires etched in a single 

circuit board, signals must be bussed between the processor and the 

various devices of which it is a part. The seventy bus lines required 
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~ by t h i s  implementation are shown i n  F igure  1. Th i r t een  l i n e s  ere used 

I 

f o r  power d i s t r i b u t i o n  and t iming s i g n a l s  which are desc r ibed  below. 

Three l ines  spec i fy  which one of t h e  e i g h t  dev ices  i s  being s e l e c t e d  

by a p a r t i c u l a r  i n s t r u c t i o n .  The fo l lowing  e i g h t  l i n e s  a l low the  devices  

t o  r eques t  ( i n t e r rup t )  t h e  processor  f o r  execut ion  of s p e c i f i c  groups 

~ 

III. Processor-Device Communication 

1 Conrmunication between t h e  microprocessor  and each of t h e  dev ices ,  

of logic-replacement mic ro ins t ruc t ions .  The i n t e r r u p t  s t r u c t u r e ,  which 

makes t h e  processor  appear as a dedica ted  s l a v e  t o  each device ,  i s  a l s o  des- 

c r ibed  below. 

devices  by i n i t i a t i n g  t r a n s f e r s  t o  and from the  processor  and ope ra t ions  

a t  t h e  v a r i o u s  po in t s  i n  t h e  device  l o g i c  cha in .  The next  s i x t e e n  b i t s  

provide a b i d i r e c t i o n a l  d a t a  bus f o r  i n p u t s  t o  and ou tpu t s  from t h e  pro- 

ces so r .  F ina l ly ,  t he  scra tchpad  read-wr i te  memory a s s o c i a t e d  wi th  t h e  

processor  and thereby a v a i l a b l e  t o  a l l  devices  is  addressed and accessed 

over  a second b i d i r e c t i o n a l  bus.  

The fo l lowing  fou r t een  bus l ines  are used t o  c o n t r o l  t h e  

A s  with  most b i p o l a r  microprocessors ,  t h e  a r i t h m e t i c  and processor  

(next address  c a l c u l a t i o n )  func t ions  are performed by s e p a r a t e  ch ips  wi th in  

t h e  I n t e l  3000 family.  

ch ips .  

i n s t r u c t i o n .  

w i l l  n o t  be  described i n  d e t a i l .  Others  w i l l  be  re ferenced  i n  t h e  more 

d e t a i l e d  d e s c r i p t i o n  of t h e  processor  implementation which fo l lows .  

F igure  2 shows t h e  s p e c i f i c  conf igu ra t ion  of t hese  

F igure  3 l ists  t h e  va r ious  f i e l d s  which make up t h e  s i x t y - b i t  micro- 

Many of t hese  a r e  s p e c i f i c  t o  t h e  3000-series elements and 

which occurs  across  the seventy- l ine  bus desc r ibed  above, i s  c o n t r o l l e d  

by t h e  t iming s i g n a l s  shown i n  F igure  4 .  The system i s  d r iven  by a s i n g l e  
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twenty megahertz CLOCK to insure that the devices and processor remain 

synchronized. 

An individual microinstruction begins execution with the leading 

edge of the CPU CLOCK. 

the processor chip requiring approximately fifty nanoseconds. 

address is calculated, it is presented to the (60-bit wide) microinstruc- 

tion memory and the instruction is fetched. This requires sixty nano- 

seconds for the memory used in this implementation. At the same time, 

the bidirectional busses are switched to provide input from the devices 

and scratchpad memory to the arithmetic unit bit-slices. A s  the instruction 

is being fetched, an E h i  CYCLE pulse is sent out terminating execution 

of the previous instruction. Although all devices receive this signal, 

it means only that they must relinquish the bus and access to the processor. 

Internal logic chains and interaction with their external devices may 

continue. 

This initiates the next address calculation in 

Once the 

Once fetched, a portion of the microinstruction is LATCHED to permit 

overlapping of this instruction with the next instruction fetch. The 

remainder of the instruction is presented to the processor elements directly 

and to the devices over the bus as indicated in Figure 1. The new instruc- 

tion is then initiated with the BEGIN CYCLE pulse causing a specific 

device indicated in the instruction word t o  be selected. If requested 

bv the appropriate control bits, the device immediately places data on 

the bus as input to the arithmetic units. After a settling time, the 

falling edge of the CPU CLOCK initiates execution of the microinstruction 

specified in the instruction word. As indicated, the arithmetic unit has 

access to both device data and memory data for that execution. 

After approximately fifty nanoseconds, the results of the arithmetic 

. 
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unit execution are sent to the device selected and to memory as the BUS 

DIRECTION is reversed. 

cycle is extended until the memory signals it is complete. 

the CPU CLOCK rises immediately and the microinstruction execution process 

If this is a memory reference instruction, the 

Otherwise, 

is repeated beginning with the next address calculation. 

Notice that the device can specify input to the arithmetic unit, wait 

for it to be processed, read the result, and perhaps read a resulting value 

from memory (since the bidirectional busses again reverse) before the END 

CYCLE pulse terminates the instruction. 

characteristic of the arthitecture since most processors permit only read 

device, or write device, or access memory on a single cycle. In the class 

of interfacing problems for which this architecture was intended: 

process, and write operations are very common. 

This represents a significant 

read, 

I\'. System Interrupt Structure 

The previous section described the event sequence for the execution of 

a single instruction. Since the next address opcode is part of each micro- 

instruction (Figure 3 ) ,  sequential execution of instructions is unnecessary. 

Groups of microinstructions required to perform a specific function can, 

however, be thought of as logically sequential kernels. These kernels perform 

operations for the digital devices to which the processor is connected ranging 

from single instruction shift operations to complex operations such as a 

matrix multiplication requiring scores of instructions. 

To maximize the usefulness of the microprocessor to the individual 

devices, execution of these kernels must be possible at any point in a 

devise's logic chain. The hardware interrupt structure provides this 

capability. In parallel with the execution of each instruction, the 

interrupt logic shown in Figure 5 monitors requests coming across the bus 

-9- 
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from all (eight) devices. At the point in the execution cycle immediately 

after the processor has computed the next address, the highest priority 

request is compared against the priority (number) of the device currently 

selected. If the requesting device is of higher priority, the computed 

next address is optionally stored in scratchpad memory and an instruction 

dedicated to handling interrupts from the requesting device is fetched. 

The fetched interrupt handling instruction causes the contents of 

a scratchpad memory location (interrupt vector) dedicated to the inter- 

rupting device to be read, and branches to an instruction common to all 

device interrupt handling. 

which is the microprogram address to be executed next for that device, 

into the processor so that it can be used as the next address executed, 

as depicted in Figure 5. Processing (kernel execution) for the interrupting 

device begins on the third instruction after the interrupt was received. 

This second instruction copies the value read, 

Any kernel can include instructions to change the contents of the 

interrupt vector and therefore point to a new kernel to be executed following 

the next interrupt from its device. This allows the processor to perform 

widely varied tasks for a device at different points in its logic chain. 

Since each microinstruction includes fourteen device control bits (Figure 3 ) ,  

the processor can provide not only logic simulation but also sequencing 

of the logic chains within the device. 

Return from interrupts is handled by the same logic and procedure by 

The end of each interrupt processing kernel is which they are initiated. 

a branch to a NOP instruction of lowest priority. 

is immediately interrupted by the previously interrupted kernel, its 

interrupt vector is read, and that value becomes the next address executed. 

Execution of this NOP 

It was mentioned above that the next address calculated immediately 

-11- 



before an interrupt (return address) is optionally stored in the interrupt 

vector for that device. If the option is not invoked (as specified by a 

bit in the microinstruction word shown in Figure 3 ) ,  the address is not 

stored and the return procedure will reinitiate execution at the point 

previously set in this vector address. This will typically cause re- 

execution of some instructions. It allows, however, general purpose 

arithmetic unit registers to be used without fear of their being altered 

between execution of instructions within a kernel since those instructions 

will be re-executed if an interrupt does occur. This represents another 

significant characteristic of the architecture as it reduces both micro- 

program size and save-restore time. Conventional register-save schemes 

are inappropriate due to the relatively small register complement in 

microprocessors, the high interrupt rate (virtually all kernels are executed 

in response to device requests), and the relatively small size of most 

kernels. 

.4n interrupt disable bit is included in the microinstruction word for 

tine-critical sequences of instructions. In addition, the priority scheme 

protects higher speed devices from being delayed by slower ones. 

however, it is expected that hard-wired logic will be used to implement 

time-critical functions utilizing the ease in switching between logic and 

microinstruction kernels inherent in this architecture. 

Generally, 

Specific Implementation Characteristics 

Although specific details of the implementation are not critical to 

the microprocessor architecture presented herein, they are discussed 

briefly as one example of its utilization. Intel 3000 series components 

were used to build a prototype system to serve as a display controller 

-12- 
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for the Tektronix 4014 graphics terminal. 

include an interface to the 4014, a floppy disk controller, a serial inter- 

face to a host computer, and a multiply-divide unit. The system is capable 

Devices connected to the processor 

of receiving segmented images over a serial communication line from a host 

computer, massaging this display data into a compact form, storing it on the 

disk unit, and displaying the images with three-dimensional translation, 

rotation, and scaling in both the store and refresh modes of the 4014. 

Functions performed by the microinstruction kernels ranged from single 

instruction read character and store in memory to using the multiply-divide 

unit to multiply four by four matricies for coordinate transformation. 

Idiosyncracies of the Intel 3000 components permitted a bit in the micro- 

instruction word, shown in Figure 3 ,  which disables the arithmetic units so 

that non-destructive tests may be  performed. In addition, deficiencies in 

the conditional branch characteristics required bits specifying branch on 

carry-in and carry-out. 

VI. Advantages of this Architecture 

The computer architecture described in the previous sections is intended 

to provide an approach to simplifying digital logic unit design. 

feature is the incorporation of a high speed microprocessor to replace 

portions of the digital logic chain with sequences of programmable micro- 

instructions. When properly applied, this will reduce the package count, 

wiring complexity, power consumption, and therefore overall system cost. 

Its major 

In applications where timing characteristics permit, multiple devices 

can draw on a single microprocessor for logic replacement. In addition 

t o  the obvious cost and complexity reduction befefits, this significantly 

-13- 



simplifies the intra-device communication problems. 

can serve as a buffer to mask the effects of differing device speeds. 

Internal processor registers can be used to maintain a single copy of 

interlock and device communication controls, Perhaps most significant, 

the seriel nature of the microprocessor can reduce device race-condition 

conflicts and serve to isolate the devices for debugging. 

Scratchpad memory 

Naturally, the usefulness of including a microprocessor in a digital 

design will depend on the extent to which it can perform logic functions 

required by the design. Arithmetic and shift operations, common within 

these processor elements, easily replace hard-wired logic causing signi- 

ficant reduction of space consuming data path wiring. Temporary storage 

of data and control information, simplified by the processor's internal 

registers and scratchpad memory, is another candidate for logic replacement. 

In addition, the processor's ability to control the device sequencing using 

device control bits and updating the interrupt vector to point to differ- 

ent kernels (states) can significantly increase design flexibility and 

reduce re-wiring during the debug process. 

.a 

A final advantage involves simplification of the hard-wired logic debug- 

ging. Since, within this architecture, the processor kernels are interacting 

with the device at various states in the logic chain, test programs can 

be written to repetitively activate isolated portions of the logic. 

allows modular debugging and provides repetitive signals necessary for 

good oscilloscope traces. 

This 

V I I .  A Note on Speed 

In the preceeding sections, specific timing characteristics have been 
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avoided as they do not directly effect the architecture presented. The 

microprocessor system implemented as an example has a basic instruction 

time of 300-nanoseconds with an additional 200-nanoseconds required for 

memory reference instructions. That speed limitation is largely due to 

characteristics of the Intel 3000 elements and implies a minimum interrupt 

service time of one microsecond. (This includes one memory reference 

instruction to read the vector address, one non-memory reference instruc- 

tion branch to the kernel, and execution of the first instruction in the 

kernel.) This example could therefore sustain megacycle request bursts 

and approximately 250,000 processor requests per second assuming ten to 

twenty instruction kernels. This seems adequate for most logic systems, 
- 

and has proven so for the graphics display processor application. 

The real timing issue, however, is not absolute speed but rather 

the relative speed of the processor compared to available hard-wired 

logic. Assuming equivalent technologies, the speed difference will 

depend on the overhead in gate levels necessary to provide multiple func- 

tions within the microprocessors. Evidence suggests (1) that this speed 

reduction (or processor complexity) factor is fifteen to twenty. The 

nicroprocessor architecture described herein is oriented toward inter- 

leaving kernel execution and hard-wired logic. The speed factor implies 

that the processor will be usable for those functions in the logic chain 

where the design timing requirement is at least twenty times slower than 

the basic logic time necessary to perform the function. 

V ' T I T .  Summary 

A microprocessor-based system architecture has been presented for the 

design of digital devices. It is centered around the interconnection of 
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the microprocessor and digital devices in such a way that various portions 

of the digital logic chain can be replaced with sequences of microinstruc- rn 

tions. Where multiple devices are augmented with a single processor, the * 

architecture provides a very convenient interface between them. A proto- 

type graphics display controller was built using Intel 3000 series micro- 

processor elements which has demonstrated the viability of the architecture 

for realistic digital design problems. 
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